Finding the Solution of x when given two functions

A \textit{function} is a correspondence between two sets (called the \textit{domain} and the \textit{range}) such that to each element of the domain, there is assigned exactly one element of the range.

When an equation represents a function, the variable (usually x) whose values make up the \textit{domain} is called the \textit{independent variable}.

The other variable (usually y) whose values make up the \textit{range} is called the \textit{dependent variable} because its values depend on x.

Equations that represent functions are often written in \textit{function notation}.

The equation $y = 2x + 1$ can be written as $f(x) = 2x + 1$.

The symbol $f(x)$ replaces the y and is read f of x.

The f is just the \textit{name} of the function.

It is NOT a variable that is multiplied by x.

Function Notation: $f(x)$ means f of x

Function Notation: $g(x)$ means g of x

I refer to this as fred meets ginger to help you remember to set these functions equal to one another and then solve.

You will solve these by using \textbf{INVERSE} operations!

What is the solution to $f(x) = g(x)$?

\begin{align*}
\text{Ex 1:} & \quad f(x) = 10x + 2 \quad \text{this is} \quad \text{fred} \\
& \quad g(x) = 5x + 17 \quad \text{this is} \quad \text{ginger}
\end{align*}

First: Set up the problems by setting the functions equal to one another!

\begin{align*}
\text{Ex 1:} & \quad 10x + 2 = 5x + 17 \quad \text{fred meets} \quad \text{ginger} \\
& \quad 10x + 2 = 5x + 17 \quad \text{start by moving variable to left side with inverse operation} \\
& \quad -5x \quad -5x \\
& \quad 5x \quad 5x \\
& \quad f(x) = g(x)
\end{align*}
\[
5x + 2 = 17 \\
-2 -2 \\
\underline{5x = 15} \\
5 5 \\
x = 3
\]

What is the solution to \(f(x) = g(x) \)?

Ex 2:
\[
f(x) = 2.4 + 0.4x \quad \text{this is} \quad \text{fred} \\
g(x) = 0.28x - 1.2 \quad \text{this is} \quad \text{ginger}
\]

First: Set up the problems by setting the functions equal to one another!

Ex 2:
\[
2.4 + 0.4x = 0.28x - 1.2
\]

\[
2.4 + 0.4x = 0.28x - 1.2 \quad \text{start by moving variable to left side with inverse operation} \\
-0.28x -0.28x \\
\underline{2.4 + 0.12x = -1.2} \\
-2.4 -2.4 \\
\underline{0.12x = -3.6} \\
0.12 0.12 \\
x = -30
\]

What is the solution to \(f(x) = g(x) \)?

Ex 3:
\[
f(x) = x + 7 \quad \text{this is} \quad \text{fred} \\
g(x) = x - 3 \quad \text{this is} \quad \text{ginger}
\]

First: Set up the problems by setting the functions equal to one another!

Ex 3:
\[
x + 7 = x - 3
\]

\[
x + 7 = x - 3 \quad \text{start by moving variable to left side with inverse operation} \\
-1x -1x \\
\underline{7 \neq -3} \\
\underline{\text{NO SOLUTION}} \\
\text{There is no number that can be substituted for} \ x \ \text{to make the equation true!} \\
f(x) = g(x) \text{ Notes, Page 2}
What is the solution to \(f(x) = g(x) \)?

Ex 4:

\[
\begin{align*}
\text{f}(x) &= 4x + 5 \quad \text{this is} \quad \text{fred} \\
\text{g}(x) &= 4x - 5 \quad \text{this is} \quad \text{ginger}
\end{align*}
\]

First: Set up the problems by setting the functions equal to one another!

Ex 4:

\[
4x + 5 = 4x - 5
\]

\[
\begin{align*}
4x + 5 &= 4x - 5 \\
-4x &\quad -4x \\
5 &= 5 \\
\end{align*}
\]

IDENTITY

No matter what number you substitute in for \(x \), it makes the equation true! All real numbers work!

Real World Application Problem:

Daisy’s Flowers sells a rose bouquet for \$26 plus \$4.50 for every rose. A competing florist sells a similar bouquet for \$39.95 plus \$2.95 for every rose. Find the number of roses that would make both florists’ bouquets cost the same price.

What do we want to find?!

We want to find the number of roses that would make both florist’s bouquets cost the SAME PRICE.

What function represents Daisy’s Flowers rose bouquet?

bouquet costs \$26 plus \$4.50 for every rose

\[
f(x) = 26 + 4.5x
\]

What function represents the competing florist’s rose bouquet?

bouquet costs \$39.95 plus \$2.95 for every rose

\[
g(x) = 39.95 + 2.95x
\]

How do we solve the problem now?!

\[
f(x) = g(x)
\]

\[
26 + 4.5x = 39.95 + 2.95x
\]

Find the \# of roses that would make both florist’s bouquets cost the same price

\[
f(x) = g(x)
\]